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A method to prove the fact that the string tension a in strongly coupled lattice 
gauge theories is of the form a = -log 13 + 6, where 6 is an analytic function of 
the inverse coupling 13= 1/g 2, is presented. Its relation to random surface 
methods, in particular to the work of Debrushin and Holick~, Koteck), and 
Zahradnik, is discussed. 
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I t  is well k n o w n  tha t  the expec ta t ion  values of local  observables  in s t rongly  
coupled  lat t ice gauge theories  are ana ly t ic  funct ions of the inverse coupl ing  
fl = 1/g 2 (see, e.g., Ref. 1). In  particular, this is true for the Wi l son  loop  
observable  W ,  co r r e spond ing  to a closed, r ec tangu la r  l oop  C,t of side 
lengths t, l. This  does  not  imply,  however ,  tha t  the s tr ing tens ion a, which 
is ob ta ined  f rom the expec ta t ion  value ( W , t )  by  

a = -  l im l l o g ( W , i )  (1) 
H 

is ana ly t ic  in ft. Indeed,  it is bel ieved tha t  a is of the form 

a = - l o g  fi + 6(f l )  (2) 

where the funct ion 6 ( . )  has an  analy t ic  con t inua t ion  in some n e i g h b o r h o o d  
of zero. 

~ Theoretische Physik, ETH-H6nggerberg, CH-8093 Ziirich, Switzerland. 
This paper is based on a talk presented at the conference on Statistical Mechanics of Phase 
Transitions--Mathematical and Physical Aspects, Trebon, September 1-6, 1986. 
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While ~ has already been calculated up to order 12 in /3, (2~ no 
rogorous proof for the assumed analyticity of ~ has appeared. Note that 
this cannot be done by simply working out the cluster expansion for ~7 
sketched by Miinster(2/; in fact, it can be shown (3) that the corresponding 
expansion is not absolutely summable. 2 

In this paper I present a method which was used recently (3) to prove 
the analyticity of ~(- ). It structurally is very similar to the methods used by 
Holick2? et al. (4) to show the existence of non-translation-invariant Gibbs 
states in the context of Pirogov-Sinai theory. The organisation of this 
paper is as follows: I first review Wilson's formulation (5) of lattice gauge 
theories. Then the usual strong coupling cluster expansion is used to derive 
a representation of (W, t )  as a decorated sum over charged surfaces with 
boundary Ctt. The deviations of these surfaces from the minimal surface 
with boundary Ctt are then considered as particles of a gas of excitations 
living on the minimal surface So. For large g2 this gas turns out to be 
dilute, and the Mayer expansion for the free energy density of this gas, 
which is essentially equal to 6, is convergent. This implies the analyticity of 

in a neighborhood of/~ = 0. 
While I do not present all the details of the proof here, I point out the 

main differences between it and Ref. 4, and also mention some of the 
problems that had to be solved in order to complete the proof, 

I consider strongly coupled lattice Yang-Mills theories defined in a 
finite box A c Z ~, where d is the space-time dimension, and the lattice 
spacing was set to one for notational convenience. As usual, a gauge field 
configuration is a map from the positively oriented nearest neighbor (n.n.) 
pairs 3 in A into the gauge group G: (xy)~-*g~y; if ( y x )  is positively 
oriented, one sets g~y = g~_~. To each closed loop C of n.n. pairs in A is 
assigned the loop variable gc = [It~c gt; in particular, one assigns to each 
plaquette p in A the plaquette variable gop, often simply denoted gp. 

Expectation values in the volume A are defined by 

1 

(xy) 

where ZA is chosen such that (1)A = 1 and SA is the Wilson action 

SA = ~ S(gp), s ( . )=(1 /g2)ReTr( . ) - -cons t  (3) 
p ~ A  2 

2 This does not affect the calculation ~ in Ref. 2, because it can be shown by methods similar 
to those presented in this paper that Miinster's expansion is indeed convergent and gives the 
correct series for 6 if it is resummed in orders of ft. 

3 I sometimes use the word "link" for a n.n, pair. 
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Here g2 is the coupl ing  cons tant ,  the t race T r ( . )  is t aken  in an i r reducible  

represen ta t ion  of the gauge  g roup  G [for  G = U(N) or SU(N) one usual ly  
takes the fundamen ta l  r ep re sen t a t i on ] ,  and  the cons tan t  is chosen in such 

a way tha t  

f e (g) dg = 1 (4) 

A 2 denotes  the set of posi t ively  or ien ted  p laquet tes  in A. The ther- 
m o d y n a m i c  l imit  A --+ Z a of  ( - ) a ,  which exists due to the convergence  of 
the s t rong coupl ing  cluster expans ion ,  is deno ted  ( . ) .  

Let  X be a p lane spanned  by two of the coord ina t e  direct ions,  and  let 
C,~ be a rec tangu la r  l oop  of  side length t, resp. l, in X. The  Wi l son  loop  
observable  W,t co r r e spond ing  to Clt  is then defined as 

Wtt = Tr  gct~ 

where I assume tha t  the t race is t aken  in the same represen ta t ion  as in the 
action. The  str ing tens ion cr is now defined by Eq. (1): 

�9 = - l im l ,,t~ oo ~ l o g ( W , t )  

Since a = 0  for represen ta t ions  tha t  are tr ivial  on the center  4 Z(G), I 
assume that  the represen ta t ion  qc tha t  was chosen to define W,1 represents  

Z(G) in a nont r iv ia l  way. 
Let  F 0 be the set of finite, nonempty ,  connec ted  sets of posi t ively 

or iented  plaquet tes ,  p( .  ) = e ~() - 1, and  define 

z(~) = I [ I  p(g~) [ I  dg~. ~ ,  <xv> " ( 5 )  

zA~/) = f w,, [ I  p(g~) 1-I ag.~v 
p ~ ~ < xy > 

The s t rong coupl ing  cluster  expans ion  then gives the fol lowing represen-  

ta t ion  for ( W , l ) :  

~c(~/o ..... 7,,) f l  z(7,) (6) <w,,>= ~ Z zc(~o) n! 
n = 0  yO,...,?n~FO i =  1 

4 This fact is stated as a theorem at various places in the literature, see, e.g., Ref. 1. To my 
knowledge, however, there is no proof in the literature that is correct or could be extended 
to a correct proof with some extra work. A correct proof will be sketched at the end of this 
paper. 
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Here the sum is over finite sequences 7o,..., 7n in F o (where some of the ?i 
might be equal), 7o has to be connected to Ctt, and ~bc(7o,..., 7n) is a 
combinatoric coefficient invariant under permutations of 7o ..... 7n. It is zero 
if yo U .. .  w Tn is not a connected set. For  large g2 the expansion (6) 
converges absolutely (see, e.g., Ref. 1). 

At this point it can already be seen why (6) is a representation of 
( W , I )  as a sum over "decorated surfaces with boundary C,t." Let us first 
consider the simple case where the gauge group G is Z2. In this case it is 
easy to see that Z c ( 7 ) = 0  unless 0?=Czt  and z ( 7 ) = 0  unless c~7= ~ 
(c~ 7 denotes the set of n.n. pairs in 2U, which belong to an odd number  of 
plaquettes in V). Therefore, (6) is an expansion of ( W , t )  into a sum over 
surfaces 7o with boundary Ctt, decorated with clusters of closed surfaces (I 
will make the notion of a decoration of ?o more precise below.) A typical 
contribution is shown in Fig. 1. 

For  a general group 7o is not necessarily a surface with boundary C,l 
in the geometrical sense. It can, however, be shown ~1~ that Zc(?o)=O if 
there is no F-valued 2-form ~o defined on 70, where F is the dual of the cen- 
ter of G, such that d*~o lives on C,I. Here d'e9 is defined as 
(d*~) ( ( xy ) )  = Z ~o(p), where the sum goes over all plaquettes p such that 
( x y )  ~ c3p (I have written F as an additive group). Therefore every 7o con- 
tributing to (6) contains at least a surface S with boundary c3S= C,t. I will 
call such ~o from now on with a slight abuse of notation a surface with 
boundary C,I as well. Note that the minimal surface ?min with boundary C,z 
(it consists of all plaquettes in the plane s that lie in the interior of C,r has 
size [ ~ m i n [  ~-" tl. 

Fig. 1. 

~ D3 

C " ~  0' O "  / - - - - ) U  / 

"" D4 

Ctl 
A decorated surface with boundary C,t. While D 1 . . . . .  /)4 are decorations of the 

surface 70, the "walls" W~ and W2 are part of Yo- 
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Next I want to formalize somewhat the notion of a decoration of 70. 
Let X be a function from Fo into the nonnegative integers 2 o with 
n(X) :=  Z?~r0 X(? )<  oo. One then calls X a multi-index defined on F o and 
sets 

X! := [ I  X(7)!, zX:=  I1 z(7) ~ 
y E F 0  ~'~F0 

IXl :=  F~ x(?)]~l 
y c F o  

where ]?[ is the number of plaquettes in 7- With a slight abuse of notation I 
call 7(X) := u {7: Y(? )>  0} the support of tl. Now Y is called a cluster if 
7(X) is a connected set. If in addition 7(X)w 7o is a connected set (I say X- 
is attached to 7o), I call X a decoration ofy o. For a multi-index X and a set 
7oaFo, I define ~bc(7o, X ) : =  ~b~.(70, 71 ..... 7,), where I choose 71,---, 7,, to be 
any sequence that contains exactly X(?) copies of each 7 ~ Fo. For  several 
multi-indices X1 ..... Xm I define 

4,.(~o, x l  ..... xm) := ~(?o,  x ,  + ... + xm) 

Since ~b~.(7o, 71 ..... 7 , , )=0 if 7oU --" UT,, is not a connected set, any 
sequence 71,.--, 7n contributing to (6) can be decomposed into decorations 
of 7o that are pairwise not connected to each other. Using the fact that 

(~c(7o, x l  ..... x . , )  = ( I  ~(7o, x,) 
i - - 1  

if, for i # j ,  ?(Xi) is not connected to 7(X;) (for a proof see, e.g., Ref. 6, 
Lemma 3), we can rewrite (6) 

<W,,)=Zzc(?o) E '  f i  z(XI 7o) (7) 
70 {XI , . . . ,Xm}  i - -  1 

where the sum Y~' goes over the set {X1 ..... X,,} of decorations of 7o such 
that 7(Xi) and ?(Xj) are not connected to each other for i # j ,  and 

Z X 

z(x170) = T., 4c(?o, x )  

The reader familiar with Ref. 4 might suggest at this point that we 
analyze 7o using the methods of Dobrushinff  ) One should get a description 
of 7o in terms of pairwise compatible standard walls and it should be 
possible to regroup the walls corresponding to 7o and the decorations of 7o 
into aggregates. The resulting aggregate model then should be analyzed by 
the methods of Ref. 4. 
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For this approach it is important, however, that the activity z(70) of 
the surface 7o factors into the activity of the minimal surface that can be 
spanned into C,~ times the product of suitably defined activities for the 
walls of 7o. But unless G (the gauge group) is Abelian, this property fails 
for the model considered here. If one considers charged surfaces (to be 
defined below) with boundary C,t, however, the desired factorization 
property can be proved to hold. 

We therefore continue as follows: Let 

p ( ) =  ~] po(), Po()=2odozo()  
Q # O  

be the Fourier decomposition of p; here {;gQ(')}O~d denotes the set of 
characters corresponding to the irreducible representations of G, 

d o = Xo(~ ), and 

2Q = (1/~bQ) f ;go(g) P(g) dg 

[note that the trivial representation 0 s G does not contribute to p, due to 
the normalization condition (4)]. It is then obvious that 

zc(7o) = ~ zc(7o, Q) 
Q 

where the sum goes over functions Q: 7o--4 G and 

(8) 

zc(7o, Q) = I w,, [I pQ~)(g~) 
P~Y0 

Inserting (8) into (7), we finally obtain a representation of (W,I} as sum 
over decorated charged surfaces with boundary C~, 

(W,I} = Z zc(7o, Q) Z' f i  z(XI70) (9) 
(Y0,Q) {X[,...,Xm} i =  1 

Here I defined a charged surface with boundary C,~ as an ordered pair 
(7o, Q), where 7o is a surface with boundary C,~ and Q is a function 

Q: 7o ~ G. 
To analyze the charged surfaces (7o, Q) I use the methods of 

Dobrushin. ~7) Rather than describe all the details here, I point out some 
of the relevant ideas. 

Recall that C,t was a loop in a certain plane N. Let Jr be the 
orthogonal projection from 2 a onto X. I call a set of plaquettes Jr-connec- 
ted if its projection is a connected set of plaquettes, links, and points in X. 
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A plaquette p in a charged surface (70, Q) is now called regular if (i) ~(p) is 
a plaquette in the interior of C,t (in particular this implies that p is parallel 
to X), (ii) there is no other plaquette p' e To that has the same projection, 
and (iii) Q ( p ) = q c  or tic, where qc is the representation used in the 
definition of W,t and tic is the conjugate representation [recall that I 
assumed that the same representation was used in the action; therefore, if/~ 
is small enough, 2qc= 2qc is the largest Fourier coefficient of p(.)] .  Every 
plaquette in 7o that is not regular is called excited. 

A pair (W, Q') is now called 5 a wall of(7o, Q) if W is a ~z-connectivity 
component of the set of all excited plaquettes in 7o and Q' is the restriction 
of Q onto W. We call co = (W, Q') a standard wall if there is a charged 
surface (7o, Q) such that co is the only wall of (7o, Q). Two standard 
walls (W~ Q~) and (WzQ~) are called compatible if ~(WI)~ (W2) is not a 
connected set. 

It is now possible to translate each wall of a charged surface (70, Q) in 
such a way that the resulting set of walls is a set of pairwise compatible 
standard walls. It turns out that this correspondence between charged sur- 
faces and sets of pairwise compatible walls is 1 1, and that the activity of a 
charged surface is equal to the product of suitably defined activities for the 
standard walls corresponding to (7o, Q) times the activity of the minimal 
surface 7m~n with boundary C~l. Note, however, that it is quite nontrivial to 
verify these facts for the surfaces considered here. This is mainly due to two 
complications: 

First, the projection 7r(7) lies in general not in the interior of Ct/, as it 
does for the surfaces considered by Dobrushin or by Holick) et al. 
This produces boundary effects that are technically hard to analyze. For 
example, there are now walls (W, Q') such that ~(W) is connected, but W 
is not. This does not occur in the models of Dobrushin or Koteck). 

Second, the above-mentioned factorization property is not obvious in 
our model, since Z(7o, Q) is given by an integral that in principle couples 
all the walls of (7o, Q). Using gauge invariance and a trick proposed by 
Seiler (8~ (see also Ref. 3, pp. 59-62), which involves a lattice gauge theory 
on a finer lattice in an intermediate step, the desired factorization property 
can nevertheless be obtained. 

Now we can follow the lines of Ref. 4. The idea is to regroup the walls 
and decorations of a charged surface in such a way that each group has a 
connected projection, but different groups have projections that are not 
connected to each other. One then again applies the methods of Dobrushin 
to these groups (called aggregates in the language of Ref. 4) and finally 

5 For  technical reasons a slightly different definition, which implies that  all plaquettes in W 
that are connected to the bounda ry  3 W of W are still regular, is used in Ref. 3. 
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obtains a representation of (W,~) as the partition function of a certain 
polymer gas times the activity of the minimal surface 7rain, 

Wtl  ) -- Zt l  Zc(~min ) (10) __ pol 

Note that the free energy density 

7pol f p o l = _  l o g _ ,  l 

of the Polymer system is essentially equal to ff(fl), since by the Peter-Weyl 
theorem 

ZC(Ymin) = ,~tl 

where 2 is the Fourier coefficient of p corresponding to the representation 
used in the action (and in W,i), and 2 ( f l )~  0 like fl as fl ~ 0. 

For  small fl the polymer gas turns out to be dilute, the Mayer expan- 
sion for fP~ converges, and one can show that fpo! is analytic in ft. This 
implies the desired analyticity of ff in a neighborhood of zero. 

Since the technical details sketched above might obscure the basic sim- 
plicity of the proof, I summarize again the main steps: First the standard 
strong coupling cluster expansion was used to obtain a representation of 
Wilson loop expectations (W,~> as sums over surfaces ~'o with boundary 
C,t decorated with clusters of closed surfaces. The techniques of Dobrushin 
give a description of 7o in terms of standard walls. At this point two main 
new ideas were used to continue: First we used the Fourier expansion of 
the weight of the geometric surface to obtain a representation of < Wt~> in 
terms of charged surfaces. While the desired factorization properties of the 
weight of the geometric surfaces could not be proven, this could be done 
for the charged surfaces. Second we regrouped certain walls and 
decorations into aggregates, and obtained a description of r in terms of the 
free energy density of a gas of hard core interacting particles. For  strong 
couplings this gas is dilute, and therefore the Mayer expansion for its free 
energy density can be used to prove the desired analyticity properties of or. 

I finally want to discuss the condition that the representation qc used 
to define W,t represents the center Z(G) in a nontrivial way. Assume that 
this is not the case. First of all the proof that Zc(7o) = 0 if ~o does not con- 
tain a surface with boundary C,t breaks down [-the condition involving the 
dual F of Z(G) now reads Zc(7o)= 0 unless there is a F-valued 2-form co 
defined on 7o such that d'co = 0]. 

It is known that this is not only a technical problem. Indeed, it can be 
shown under rather general conditions ~1'9) that for 7o e F o  as in Fig. 2, 
Zc(7o) d- 0 if qc is trivial on Z(G). If the representation in the action is the 
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Ctl 

zo 

I I  I I I I  I 
Fig. 2. The torus ~'o. 

fundamental representation qr of G = U(N) or SU(N), and qc is the adjoint 
representation qaaj, this follows immediately from the fact that qaaj ~ c]r x qr' 
So the leading term in the cluster expansion of ( W t l )  falls off only 
exponentially with the length 2(t + l) of C,t. This suggests the conjecture 
that for representations qc that are trivial on Z(G) 

1( W,t)] >~ const x e -~2(,+ n (l 1 ) 

with constants const > 0  and ~ < o% which do not depend on t and l. Note 
that (11) clearly implies a = 0. 

It should be possible actually to prove (11) by the methods described 
in this paper. Instead of excitations over 7min, one considers excitations 
over 7o as in Fig. 2. The four ( d = 3 )  "ground states" as in Fig. 3 will 
replace the regular plaquettes, and the polymer gas now lives on Ctz instead 
of 7rnm- Note that there is the additional problem of a certain conservation 
taw, because the "twists" of the ground state must add up to 2re. This 
problem can be solved by Fourier transformation./6'1~ 

In the end one should obtain the existence of the limit 

1 
= - lim - -  log(W~z) 

,.z~ ~ 2(t + I) 

'd J r , 
CtL CtL CtL Ct l 

Fig, 3. The four ground states in d =  3. 



876 Borgs 

and (for q c  = qadj ,  and the fundamental representation in the action) the 
analyticity property 

= - 4  log fl + ~(fl) 

where ~ is analytic in some neighborhood of/3 = 0. 
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